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Homogeneous temperature-based climate regions are delineated for 
a five-state area of the south-central United States using multivariate 
cluster analysis. The variables used in the clustering are the monthly 
means of maximum and minimum temperature as well as the inter-
diurnal variability of these temperatures. Both raw data and rotated 
PCA component scores are used for clustering. Two clustering tech-
niques – Ward’s method and average linkage – are compared, and 
average linkage is found to produce the most meaningful results. 
Based on multiple clustering solutions, seven regions are defined for 
the study area. Multivariate ANOVA applied to an alternate tem-
perature data set shows that the defined regions are significantly 
different from one another. The defined regions are compared to 
climate division boundaries for the study area. Most divisions are 
largely contained within a single climate region, but nine divisions 
across Texas, Oklahoma, and Arkansas are split between multiple 
zones. Finally, the applicability of these newly defined regions is 
demonstrated by identifying significant relationships between re-
gional-mean maximum and minimum monthly temperatures and 
three important hemispheric-scale teleconnection indices. Signifi-
cant correlations are found between temperature in the study area 
and both the Pacific/North American pattern and the North Atlantic 
Oscillation, mainly in winter and spring. The PNA is negatively 
correlated with maximum and minimum temperatures, while the 
positive phase of the NAO is associated with warmer conditions. 
Overall, the sub-regions defined here are believed to represent ap-
propriate spatial units for future studies of temperature change and 
variability in the southern United States. Key Words: climate re-
gionalization, cluster analysis, surface temperature, teleconnec-
tions, southern United States. 

 
Introduction 

C limate regionalization is the identification of regions – at the global scale 
or smaller – which can be said to be internally homogeneous; i.e., every 

place within the region has a similar climate. There are many motivations for 
climate regionalization, one of which is to facilitate the study of climate 
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change and variability at regional and local scales. As global climate changes, 
local and regional climates frequently vary in ways that are quite different from 
the global pattern, as these smaller-scale climates are controlled by a variety of 
local and global forcings (McGuffie et al. 1999; Easterling et al. 2000; Stott et 
al. 2000). In order to study regional responses to climate change, it is helpful to 
have an empirically-defined region; i.e., a region that is internally homogene-
ous in climate and can be assumed to respond as a unit to variations in climate 
forcings. For example, regions of this nature are beneficial when downscaling 
to regional climates from global circulation model scenarios. 
 Regionalization has a long history within the disciplines of geography and 
climatology; researchers around the world have defined and classified homoge-
neous climate regions at all spatial scales using a variety of methods and vari-
ables (e.g. Stooksbury and Michaels 1991; Bunkers, Miller, and DeGaetano 
1996; Fovell 1997; Feddema 2005; Pineda-Martinez, Carbajal, and Medina-
Roldan 2007). For example, the well-known Köppen system defines general-
ized climate types based on monthly and annual means of temperature and 
precipitation, while the Thornthwaite system produces climate types based on 
the regional water balance. These empirical methods classify regions based on 
(dis)similarities in observed data, but their outcomes are determined to some 
extent by a priori classification rules that are independent of the data being 
classified. Deterministic methods like cluster analysis can be used to define 
regions based entirely on observed values, without any pre-defined thresholds 
to separate classes. 
 Cluster analysis has been used frequently in the atmospheric sciences, 
most often for one of two general purposes: synoptic classification (e.g. Kalk-
stein, Tan, and Skindlov 1987; Davis and Kalkstein 1990; Cheng and Wallace 
1993; Santos, Corte-Real, and Leite 2005) and climate regionalization (e.g. 
Briggs and Lemin 1992; DeGaetano 1996; Coronato and Bisigato 1998; Whit-
field, Bodtker, and Cannon 2002; Unal, Kindap, and Karaca 2003). The basic 
objective of cluster analysis is to identify subsets of a set of objects (in this 
case weather stations) grouped in such a way as to maximize the similarity 
within the groups while simultaneously maximizing between-group dissimilar-
ity. The goal is to identify any underlying structure (or spatial pattern, in the 
case of regionalization) existing in the dataset, which may then provide a 
framework for further investigation (Gong and Richman 1995; SAS Institute 
1999). 
 The study area addressed here is the south-central United States, compris-
ing the states of Arkansas, Louisiana, Mississippi, Oklahoma, and Texas. 
While not as topographically complex as the mountain west, for example, this 
region is climatically variable due to its proximity to the Gulf of Mexico, 
higher elevations to the west and north, and a strong east/west gradient in tem-
perature and moisture owing to the effects of continentality and the relative 
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locations of general circulation features such as the Atlantic High. While stud-
ies of this nature can be carried out anywhere, the region addressed here is cho-
sen because it is an important producer of a variety of agricultural commodi-
ties, including several types of livestock, and the implications of changed cli-
mate could be severe, particularly in marginal agricultural areas (Parry and 
Carter 1985). Furthermore, the study area addressed here is of interest due to 
its unique vulnerability to a wide range of meteorological threats, including 
extreme heat and cold, as well as more dramatic events such as tropical storms, 
tornadoes, severe thunderstorms, and winter ice storms. While various climate 
regionalizations have been performed for the United States as a whole (e.g. 
DeGaetano 2001; Fovell 1997) and for specific sub-regions (e.g. Bunkers, 
Miller, and DeGaetano 1996; DeGaetano 1996; Rhee et al. 2008), this project 
is believed to be the first at this scale specifically for the south-central U.S. 
 This study uses two different methods of cluster analysis to delineate dis-
tinct temperature-based climate regions in the study area, and compares them 
to the commonly used climate divisions. Once the regions have been deline-
ated, relationships between surface temperatures in the south-central United 
States and upper-level flow patterns are assessed by relating monthly mean 
maximum and minimum temperatures for the defined regions to three telecon-
nection indices that have been shown to be particularly important in the North-
ern Hemisphere: the El Nino/Southern Oscillation (ENSO, represented by the 
Southern Oscillation Index (SOI)), the Pacific/North American pattern (PNA), 
and the North Atlantic Oscillation (NAO). This correlation analysis provides a 
simple example of how the defined regions may be applied in the investigation 
of climate variability in the study area. 
 
Data and Methods 

Data Sources 
 To precisely identify the boundaries of climate regions, a dense network of 
observation sites is beneficial. This study uses the TD3200 dataset, an ex-
tremely dense network of weather stations in the U.S., with approximately 
8000 currently open sites, the majority of which are volunteer-staffed sites 
from the National Weather Service (NWS) cooperative program. The TD3200 
data have undergone manual and automated quality control to detect spurious 
values; however, the data have not been adjusted for non-climatological factors 
that may introduce inhomogeneity (Reek, Doty, and Owen 1992; NCDC 
2006). 
 An source of concern with the TD3200 data is that the time of daily obser-
vation (7:00 am or 7:00 pm at most sites) may bias the data by carrying over a 
particularly low minimum temperature (am observers) or a high maximum 
temperature (pm observers) from one day to the next. This error would have 
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the effect of erroneously reducing the interdiurnal temperature variabilities 
used here. Although this potential problem is troubling, the benefit of a dense 
observation network was deemed to outweigh the risk, and it is hoped that the 
long averaging period minimized any small biases present in individual 
months. 
 To obtain a spatially representative sample of sites in the study region, a 
stratified-random selection process was applied. The five-state area was di-
vided into 1ox1o latitude/longitude grid cells, and two sites were selected at 
random from each cell. For each site, 50 years worth (1948-1997) of daily 
maximum and minimum temperatures were obtained. The data from each site 
were manually screened for obviously erroneous values, and these values were 
removed and marked as missing. Next, the time series were examined for over-
all completeness, and any site missing more than 5% of the total number of 
days was rejected and replaced by another site from the same grid cell. A 
month was marked as missing when more than 10% of its daily observations 
were missing, and sites with fewer than 95% of the total months in the study 
period non-missing were replaced from the same grid cell, if another site was 
available. The result of this process was a set of 184 sites with 50-year time 
series of maximum and minimum daily temperatures. These sites are shown in 
Figure 1, along with the climate division boundaries for the five states. 
 A complete understanding of temperature patterns requires both a measure 
of the typical value (mean) as well as a measure of how variable temperature is 
around that mean. In order to capture as much temperature information as pos-
sible in the regionalization, four monthly variables were calculated over the 
study period for each site: monthly mean maximum temperature, monthly 
mean minimum temperature, mean interdiurnal variability of maximum tem-
perature, and mean interdiurnal variability of minimum temperature. The latter 
two variables were calculated by averaging the absolute differences between 
the maximum (minimum) temperatures on each day of the month and the day 
immediately preceding. The interdiurnal variability is used because it provides 
insight into the day-to-day (in)consistency of local weather – these short term 
variations will result from high-frequency synoptic events such as cold front 
passages and are likely to be highly related to health, energy, and ecological 
impacts (Driscoll, Rice, and Yee Fong 1994; Williams and Parker 1997). 
Lastly, long-term means for each of the four variables were calculated by 
month at each site. This resulted in a total of 48 values (12 months x 4 vari-
ables) at each of the 184 sites to be input into the cluster analysis. Each of 
these long-term means was then standardized to have a mean of zero and a 
standard deviation of one, to ensure that all variables had the same weight in 
the cluster analysis. 
 A significant difficulty in cluster analysis is testing whether the resultant 
regions are significantly different from one another. To facilitate this testing, a  
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Figure 1. Distribution of 184 TD3200 observation sites used in clustering, 
along with boundaries of climate divisions in the study region. 
 
second dataset was used for cluster validation: the U.S. Daily Historical Clima-
tology Network (HCND), made up of sites selected for low potential for heat 
island impacts and a high level of completeness and homogeneity. Sites in the 
HCND have undergone extensive automated and manual quality control to 
detect and correct erroneous values (Easterling et al. 1999). Daily data from 
1948-2001 for HCND sites in the study region were obtained and subjected to 
the same completeness tests as the TD3200 data, resulting in 89 sufficiently 
complete HCND sites. At each of these sites, long-term means of monthly 
maximum and minimum temperatures as well as the intra-monthly standard 
deviations of both maximum and minimum temperatures were calculated, pro-
ducing a set of 48 variables at each site, which is comparable to the TD3200-
based data used for the clustering. 
 Temperature data for the correlation analyses were obtained from the 
monthly U.S. Historical Climatology Network (HCN), which was developed to 
aid studies of regional climatic variability and/or climate change. Missing val-
ues in the HCN data have been estimated using nearest neighbors, resulting in 
station time series that are as serially complete as possible. Unlike the TD3200 
and HCND, the HCN data are adjusted for a variety of non-climatic inhomoge-
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neities – time of observation bias, station moves, instrument changes, and in-
strument moves – as well as for the effects of urbanization (Easterling et al. 
1996). All available HCN sites in the study area that had complete records for 
1950-2000 were used. For each of the sub-regions defined in the cluster analy-
sis, data from all sites with complete and uninterrupted records were averaged 
to create regional temperature time series of monthly maximum and minimum 
temperature for the study period. 
 Each of the three temperature datasets used here has a slightly different 
period of record: 1948-1997 for the TD3200 data used to create the regions, 
1948-2001 for the HCND data used to validate the regions, and 1950-2000 for 
the monthly HCN data used in the teleconnection analyses. While the temporal 
inconsistencies may seem odd, they do not negatively affect the results – it is 
beneficial to validate the regions with a different data set than that used in the 
clustering (Aldenderfer and Blashfield 1984), and a different time period is 
immaterial and perhaps even beneficial in this process. Likewise, if the regions 
are truly coherent climate zones, relationships between regional climate and 
the circulation indices should be apparent over time periods other than that of 
the clustering data; thus the inexact overlap with the HCN data (and the tele-
connection data) can be ignored. 
 
Clustering Methods 
 This study uses agglomerative hierarchical clustering methods, in which 
each observation starts as its own cluster. The clustering algorithm calculates 
the distance between all pairs of clusters using the selected distance metric, and 
joins the most similar pair. This process repeats until all sites are grouped into 
one cluster. From there, the researcher backtracks, breaking apart joined clus-
ters until the appropriate clustering level is reached (Aldenderfer and Blash-
field 1984). The measure of distance (similarity) between sites is the squared 
Euclidean distance, in which each site, described by n variables, is treated as a 
point in an n-dimensional space (Gong and Richman 1995; Fovell 1997). 
 The two clustering algorithms used here are average linkage and Ward’s 
method, which are common in climatological applications. In the average link-
age method, the distance between a pair of clusters is the average of the 
squared Euclidean distances between all possible pairs of points with one in 
each cluster. This method minimizes within-cluster variance and maximizes 
between-cluster variance, and has a slight bias toward producing clusters with 
the same within-cluster variance. In Ward’s method, the total within-cluster 
sum of squares is minimized at each iteration. This method is biased toward 
producing equal-sized clusters (Aldenderfer and Blashfield 1984; Kalkstein, 
Tan, and Skindlov 1987; Stooksbury and Michaels 1991). 
 Typically, all variables should have equal weight in the clustering process, 
and standardization of the data is often done to ensure this. However, when 
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input variables are interrelated, the redundant information increases the weight 
of the interrelated variables to an unknown degree (Fovell and Fovell 1993). In 
order to remove redundant information from the data set, principal components 
analysis (PCA) is frequently used before the clustering (e.g. Davis and Kalk-
stein 1990; Briggs and Lemin 1992; DeGaetano 1996). PCA linearly trans-
forms the original data, producing a reduced set of uncorrelated variables 
(component scores) that explain most of the variability in the original data. If 
the correct number of components is retained, most of the redundant informa-
tion will be removed, while the ‘good’ information in the data is retained 
(Horel 1981; Dunteman 1989; Jolliffe 1990; White, Richman, and Yarnal 
1991). 
 The 48 long-term mean temperature values described above are highly 
intercorrelated, so a rotated PCA using the varimax method was applied to 
reduce the dataset. The first five components, explaining 96% of the total 
variation, were retained for analysis. Component scores for each site were cal-
culated, and used as an alternative data set for clustering. 
 As there is no significance value produced by cluster analysis to determine 
the optimum solution, a major question is the determination of the ‘correct’ 
number of clusters. Fuzzy boundaries and overlap between clusters are to be 
expected due to both the continuous spatial variation of climate data and the 
inability of hierarchical methods to reassign poorly-clustered observations 
(Fovell and Fovell 1993; DeGaetano 1996). Kalkstein (1987) recommends 
using the squared multiple correlation (R2), which gives the proportion of total 
variance explained by the current clustering. It ranges from 1.00 when all ob-
servations are their own clusters down to 0.00 when all observations are in a 
single cluster. A relatively large drop in R2 from one step in the clustering to 
the next indicates that two dissimilar clusters have been forced together, mean-
ing that the solution just before the drop may be an appropriate stopping point. 
Two other statistics useful in selecting the appropriate number of clusters are 
the pseudo-F and pseudo-T2. The pseudo-F is the ratio of between-cluster vari-
ance vs. within-cluster variance, and the pseudo-T2 is the ratio of the within-
cluster sum of squares for two clusters vs. the within-cluster sum of squares for 
the one cluster that results from their joining. These statistics are calculated for 
each step in the hierarchical clustering procedure, and potentially appropriate 
clustering levels are indicated by local maxima of the pseudo-F, and/or small 
values of the pseudo-T2 that are followed by peaks (Stooksbury and Michaels 
1991; Fovell and Fovell 1993; SAS Institute 1999). In most cases, it is appro-
priate to look for agreement between several of these indicators, in conjunction 
with subjective interpretation of the spatial pattern produced by a particular 
clustering solution, to determine the ‘correct’ solution. 
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Results 

Defined Climate Regions 
 Four separate clustering solutions were produced: average linkage and 
Ward’s method, each applied to both the raw data and the PCA component 
scores. Potentially appropriate clustering levels were determined using the 
three measures described above; Table 1 lists the most likely numbers of clus-
ters from each solution, and the cluster analysis statistics that suggest each 
clustering level. Overall, much stronger agreement exists between the results of 
the average linkage approach, as only this approach led to clear agreements on 
appropriate clustering levels between all three indicators. Considering all four 
solutions together, certain clustering levels are suggested, particularly in the 
range of 10-12 clusters. Additionally, the two average linkage solutions agree 
on suggesting a solution in the mid-teens; i.e. 15-17 clusters. 
 

 
 
 Distinct  patterns can be seen when a clustering level of 15 clusters is se-
lected. Figure 2 shows the 15-cluster average linkage solution using the PCA 
scores, with coherent clusters are apparent in western Oklahoma (6) and central 
Texas (3). In the east, the coastal and inland regions (1, 2) are clearly sepa-
rated, and the panhandles of Texas and Oklahoma are identified as a distinct 
region (4). The fact that the most immediately coastal locations – Hackberry, 
LA (10), Galveston, TX (15), Matagorda, TX (8) and Brownsville, TX (8) – 
are delineated is reassuring, as this level of small-scale differentiation is indica- 

Table 1. Potentially appropriate clustering levels based on the four clustering 
solutions. The column labeled “Indicators” lists which of the cluster analysis 
statistics supports the given number of clusters for that solution. 
   
Cluster Solution Number of clusters Indicators 
Raw data, average linkage 7 all three 
Raw data, average linkage 10 all three 
Raw data, average linkage 17 all three 
PCA scores, average linkage 12 all three 
PCA scores, average linkage 15 all three 
PCA scores, average linkage 20 all three 
Raw data, Ward’s Method 10 T2, R2 
Raw data, Ward’s Method 12 T2, R2 
Raw data, Ward’s Method 14 T2 
PCA scores, Ward’s Method 10 T2, R2, F 
PCA scores, Ward’s Method 12 T2, R2, F 
PCA scores, Ward’s Method 21 T2 
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Figure 2. 15-cluster solution obtained from the PCA scores with the average 
linkage technique. The numbers have no significance other than to identify 
clusters, and will vary between maps for a given site. 
 

 
Figure 3. 10-cluster solution from the average linkage technique using the raw 
data. 
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Figure 4. Sites that clustered together in the 10-cluster solutions of all four 
clustering methods. Only groups of eight of more sites are shown. The X sym-
bol indicates sites that were not members of any consistent groupings. 
 
tive of the power of the technique. Sites in the far west of Texas are clima-
tological outliers by virtue of their isolation from the rest of the region, as well 
as by their elevational uniqueness. The two sites indicated as cluster 9 are the 
highest in the sample: Mt. Locke at 2076 meters and Chisos Basin at 1621 me-
ters. 
 Moving to higher degrees of agglomeration, the 10-cluster average linkage 
solution with the raw data (Figure 3) provides a coherent and climatologically-
rational pattern, with the least overlap of any solution at this level. The Pan-
handles appear as a solid cluster (4), which is believed to be particularly robust 
as it appeared earlier in the agglomeration process. The eastern half of the 
study region is divided into a southern (2) and northern (1) half, while three of 
the near-coastal sites appear as a distinct micro-cluster (7). The deep-south 
Texas (3), western Oklahoma (6) and central Texas (5) regions are also appar-
ent. However, even at this level of agglomeration there is overlap between 
clusters as well as a small number of un-clustered sites, which requires some 
subjectivity in the final cluster delineation. To guide in the final clustering, 
sites which clustered together in each of the 10-cluster solutions from all four 
approaches are shown in Figure 4. 
 The cores of several distinct clusters are apparent in Figure 4: the panhan-
dles of Texas and Oklahoma (7), western Oklahoma (1), central Texas (8), and 
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the gulf coast of Texas and Louisiana (5). The eastern half of the study region 
shows a south-north gradient in climate, with overlapping clusters, particularly 
in the northeast (Arkansas, eastern Oklahoma, and northern Mississippi). Us-
ing Figure 4 as a guide, sites were assigned to clusters based on the 10-cluster, 
raw data, average linkage solution. The eastern half of the study area is divided 
into two regions, the Gulf Lowland and the Eastern Highland, with the bound-
ary near the Arkansas-Louisiana border. (The region names assigned here are 
informal, and specific to this project.) The three distinct coastal sites 
(Hackberry, Galveston, and Matagorda) are subsumed into the larger Gulf 
Lowland sub-region. A Deep South (Texas) region is delineated, extending 
from Corpus Christi across to Eagle Pass. The Western Oklahoma region ex-
tends eastward across the northern border to encompass the slightly higher-
elevation sites in northern Arkansas. The Panhandle and Central Texas clusters 
complete the main pattern, with the Central Texas cluster extending westward 
to include four sites in west Texas. Finally, the outliers of far western Texas 
are merged together in a seventh cluster. During this final clustering, 14 sites 
(7.6%) were manually reassigned to a neighboring cluster to remove overlap. 
The entire study area was then divided into these seven regions using Euclid-
ean allocation in ArcGIS, as shown in Figure 5. 
 

 
Figure 5. Final regionalization, showing HCND sites used in the cluster vali-
dation step as well as the climate divisions in the region. Climate divisions that 
are less than 80% contained in a single climate region are cross-hatched. 
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 This final pattern is clearly influenced by the combined effects of eleva-
tion, latitude, and continentality. The higher elevations in the panhandles corre-
spond well to a clearly-defined cluster, and the intermediate elevations in west-
ern Oklahoma and central Texas are also delineated into separate clusters. The 
eastern half of the study region is uniformly low in elevation, contributing to 
the difficulty in differentiation of these sites. In the eastern areas, latitude and 
distance from the Gulf (continentality) are the dominating factors. The western 
extremity of Texas is cutoff from the Gulf by distance and topography, and 
extends into the more arid climate zone of the southwestern U.S. 
 
Cluster Validation 
 Cluster analysis produces no statistical output to assess the significance of 
the results. Often, the only assessment of whether a clustering is valid is a vis-
ual examination of the resulting regions. However, Aldenderfer and Blashfield 
(1984) suggest that cluster validity be assessed by formal statistical testing on 
independent data, i.e. data that were not used in the derivation of the clusters. 
To this end, multivariate analysis of variance (MANOVA) was applied to the 
HCND data described above to compare the six clusters with a sufficient num-
ber of sites (he Far West cluster, with only one acceptable HCND site, was 
dropped). MANOVA is a multivariate extension of univariate ANOVA, in 
which group means are compared across a number of variables simultaneously, 
to detect differences between classes that may not be apparent in individual 
variables (Johnson and Wichern 1998; SAS Institute 1999). The MANOVA 
output statistics indicated a statistically significant difference (p-value < 
0.0001) between the overall set of clusters, supporting the conclusion that the 
regions shown in Figure 5 are genuinely distinct climatological sub-regions of 
the south-central U.S. 
 
Comparison with Climate Divisions 
 The next step in the project was to assess the degree to which the deline-
ated regions agree with the climate divisions in the region. Climate divisions 
are frequently used as aggregation units for climate data, but their boundaries 
are not based on climatological variations, but rather on state and county bor-
ders, agricultural divisions, or topographical features such as watersheds. In 
addition to temperature, divisional-scale datasets include precipitation, heating 
and cooling degree days, and drought indices such as the PDSI and PHDI 
(Guttman and Quayle 1996). Figure 5 shows the division boundaries overlaid 
on the regions delineated in this project. Of the 47 divisions in the study area, 
19 are completely contained within one of the regions, 24 are shared between 
two regions, and 4 are split between three regions. Overall, 38 of the divisions 
are at least 80% contained within a single region; given the fuzziness of the 
region boundaries it seems reasonable to assume that that degree of overlap 
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implies a high degree of climatic homogeneity across the divisions. This in-
cludes all of the divisions in Louisiana (contained in the Gulf Lowlands re-
gion) and Mississippi (seven divisions in the Gulf Lowlands and the three 
northern divisions in the Eastern Highlands), and all but one division in Arkan-
sas (all but the two northwestern AR divisions are in the Eastern Highlands). In 
contrast, nearly half of the divisions in Texas and Oklahoma are split between 
multiple climate regions (Figure 5), suggesting that these divisions are not suit-
able as climatological aggregation units (at least as far as temperature is con-
cerned). Although this result is not surprising, give that the climate divisions 
are constructed based on more variables than temperature, the value of this 
finding is that temperature time series from divisions wholly contained within 
one of the temperature regions defined here are likely to be well-representative 
of the division as a whole. In contrast, where divisions are split between re-
gions the implication is that multiple temperature-influencing factors are at 
work in the division, and thus division-wide temperature data may be suspect. 
 
Correlations with Teleconnection Indices 
 The final step in this project was an exploration of the relationships be-
tween surface temperature in the defined regions and three hemispheric-scale 
circulation indices. For this analysis, monthly data for the PNA, SOI, and the 
NAO were obtained online from the Climate Prediction Center (CPC). Al-
though sea surface temperature (SST) based indices such as Nino-3.4 are fre-
quently used to detect the timing and magnitude of El Nino events, Hanley et 
al. (2003) found that the SOI was approximately equal in sensitivity. Each of 
the teleconnection index time series was detrended by regressing the monthly 
values on the time index (year) and retaining the residuals as the detrended 
series (Raffalovich 1994; Bell et al. 2000). For each teleconnection, the 
Shapiro-Wilks test indicated no significant departure from normality for the 
individual detrended monthly time series. 
 Regional-mean time series of monthly mean-maximum and mean-
minimum temperature were constructed by averaging data from all HCN sites 
in each region with complete and uninterrupted records for the period 1950-
2000. These time series were detrended in the same manner as the teleconnec-
tion time series. Again, the Shapiro-Wilks test indicated that the monthly series 
for both maximum and minimum regional-mean temperatures were normally 
distributed, allowing the use of the parametric Pearson’s r correlation coeffi-
cient to assess the relationship between the indices and the monthly tempera-
tures. These correlation values were calculated for the period 1950-2000, by 
month, between each sub-region’s mean temperature (maximum and mini-
mum, separately) and the monthly index value for each of the teleconnections. 
 The results of the correlation analyses are shown in Table 2 (maximum 
temperature) and Table 3 (minimum temperature). As the tables show, there 
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are distinct seasonal and spatial differences in the degree to which the telecon-
nection indices explain the regional variations in monthly mean temperatures. 
Overall, it appears that, for both maximum and minimum temperatures, the 
large-scale atmospheric circulation as measured by these indices plays a larger 
role in temperature variation in the south-central U.S. during winter and spring, 
as opposed to summer. In addition, it appears that the NAO and the PNA indi-
ces best explain variations in monthly mean temperatures. Of the three telecon-
nections, the SOI shows relatively few significant correlations for maximum 
temperature and none for minimum, and the impacts of the SOI largely appear 
to be focused in the western and southern parts of the study area. 
 The Pacific/North America Pattern is a pattern of upper-level circulation 
characterized by, in its positive phase, ridging over the western portion of 
North America (approximately centered on the Rocky Mountains) and trough-
ing over eastern North America. The negative phase of the teleconnection pat-
tern is characterized by zonal flow over the continent or, in extreme cases, a 
reverse-PNA with troughing in the West and ridging over the eastern U.S. For 
the southern U.S., positive PNA events are strongly correlated with reduced 
temperatures, owing to the increased advection of cold northerly air into the 
eastern U.S. The strength of this relation increases (i.e. is more negative) to-
ward the southeast corner of the country (Leathers, Yarnal, and Palecki 1991; 
Henderson and Robinson 1994). In the South, the PNA pattern is therefore 
likely to be related to increases in the frequency of extreme cold daily tempera-
tures, as was found by Rogers and Rohli (1991), who showed that positive 
PNA events are strongly correlated with damaging freeze events in Florida. 
 In this study, the PNA pattern shows strong negative correlations with 
both maximum and minimum monthly temperatures throughout winter and 
early spring, although this relationship is weaker for the Panhandles and West-
ern Oklahoma sub-regions; a pattern similar to that of Leathers et al (1991). 
The likely reason for this pattern is that the trough over the central and eastern 
U.S. that characterizes the positive phase of the PNA pattern is responsible for 
advection of cold northerly air into the region whenever the pattern is in place. 
Under these circumstances, months dominated by the PNA pattern would ex-
perience increased cold air influx. Interestingly, the importance of the PNA 
declines in February and March before reasserting itself in April, especially 
over the eastern sub-regions. This intermonthly shift in importance is probably 
explained by the variations in the mean positions of the ridge and trough from 
month to month; the precise atmospheric pattern described by the PNA index 
varies somewhat throughout the winter (Barnston and Livezey 1987). Another 
interesting pattern detected here is that the PNA is associated with increases in 
early spring minimum temperatures in the northern sub-regions (Panhandles 
and Western Oklahoma.) 
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 The NAO has previously been shown to have significant impacts on sur-
face temperature conditions over large parts of North America, particularly the 
East. During the positive phase of the oscillation, anomalous southerly flow 
brings warmer than normal conditions to the eastern and southern U.S, under 
the influence of the enhanced Atlantic High. The negative phase is associated 
with lower temperatures in the Eastern U.S. (Hurrell 2000; Sheridan 2003) 
 As Tables 2 and 3 indicate, the NAO index shows strong positive correla-
tions with regional monthly-mean maximum and minimum temperatures in the 
study area during winter. This winter warming during the positive phase of the 
NAO may relate to increased southerly advection into the study area due to the 
above normal SLP across the central North Atlantic, although processes related 
to the larger-scale Arctic Oscillation (with which the NAO is intertwined) may 
also play a role. During summer, the relationship, although weaker, appears to 
be reversed, with negative correlations particularly with minimum temperature. 
Spatially, the NAO first becomes significant for maximum temperature in the 
eastern sub-regions (in December), before reaching significance in all of the 
study area. Conversely, the significant positive relationship with maximum 
temperature lingers later into the year in the northernmost sub-regions. Con-
ceivably, the NAO impact fades along the coast during summer because these 
areas would be subject to moist maritime air with or without the enhanced 
southerly flow; however, during positive NAO seasons, this flow extends fur-
ther inland and is directed further west by the expanded sub-tropical high. The 
impact of the NAO on the immediate Gulf Coast is not surprising, but the de-
gree to which this teleconnection extends influence westward through the 
spring is of interest. 
 ENSO tends to have more pronounced impacts on the south-central United 
States during winter and spring. During warm phase (El Nino) events, the 
dominant circulation change is a strengthening of the southern branch of the 
Pacific jet stream across the southern tier of the U.S., along with a reduction in 
the amount of cold air advecting southward from Canada because of the zonal 
flow of the northern branch of the polar front jet. The net result is wetter and 
milder spring and winter seasons in the southern U.S. during warm events 
(Vega, Rohli, and Henderson 1998; Wolter, Dole, and Smith 1999; Higgins, 
Leetmaa, and Kousky 2002). Cold phase events are characterized by increased 
meridionality in the flow across North America with frequent ridging over the 
eastern Pacific. As a result of the northward displacement of the jet stream, the 
southern U.S. has a tendency to experience drier and warmer winter and spring 
conditions (Vega, Rohli, and Henderson 1998; Wolter, Dole, and Smith 1999; 
Higgins, Leetmaa, and Kousky 2002). 
 The correlations between SOI and regional maximum temperatures shown 
in Table 3 are consistent with these synoptic patterns (note that because a nega-
tive SOI indicates an El Nino event, positive correlations in Table 3 mean 
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cooler temperatures for this phase), with a stronger relationship. The Far West 
region in particular is influenced by the SOI pattern throughout the spring, with 
cooler temperatures when the SOI is negative. A likely explanation for this 
response is increased moisture and cloud cover in this typically dry part of the 
study area. 
 
Summary 

 Daily maximum and minimum temperatures from 184 weather stations in 
the south-central United States have been used to derive climate regions that 
are internally homogeneous in terms of temperature. Although such classifica-
tions previously have been carried out in other parts of the U.S., this project 
represents the first such classification at this scale for the south-central part of 
the country. Multivariate tests show that these regions are significantly differ-
ent from one another. These regions are believed to represent appropriate ag-
gregation units for regional-scale studies of temperature variability in this part 
of the continent. In addition, because their definition is based on long-term 
means of temperature variables, they provide insight into where various cli-
mate-producing processes dominate, such as how far inland the maritime influ-
ence of the Gulf of Mexico extends. 
 The derived regions were compared to the widely-used climate divisions, 
and significant overlap was found. The majority of the divisions in the study 
area appear to be reasonably homogeneous in terms of temperature. However, 
nine divisions, extending in a swath from the southwest to the northern part of 
the region across Texas and Oklahoma, are found to be split between tempera-
ture regions and should be viewed with caution as climatological enumeration 
units. Temperature time series from divisions that are split between regions are 
likely to be combinations of multiple climate-producing forces, and thus may 
not be ideal for analyses of temperature trends or teleconnection impacts on 
regional temperature. In contrast, the cluster-based regions presented here are 
likely to be internally homogenous in terms of the temperature-controlling 
processes affecting them. Therefore, regional temperature time series produced 
from high-quality observing sites within each region should be reliable for use 
in trend analysis or downscaling studies for the study area. 
 Monthly maximum and minimum temperatures in the defined regions 
show significant correlations with large-scale atmospheric circulation, particu-
larly in winter and spring, which demonstrates the utility of these defined areas 
as enumeration units for analyses of climate patterns. Both the PNA and the 
NAO have been found to significantly influence maximum and minimum tem-
peratures in the study area, with varying intensities both seasonally and spa-
tially. 
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 In conclusion, this project has identified seven regions across the south-
central United States that are climatologically homogeneous in terms of tem-
perature. As global and regional climate variability continues to be an impor-
tant topic of study, coherent climate regions such as these serve as useful enu-
meration units for identifying the factors responsible for producing spatial 
variations in climate, as well as in quantifying relationships between regional 
climate and hemispheric scale circulation, and downscaling from global or 
regional climate models. 
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